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Abstract

Despite longstanding concerns about environmental injustice in Louisiana’s industrialized
communities, including the area known as Cancer Alley, there is a lack of environmental health
research in this state. This research gap has direct consequences for residents of industrialized
neighborhoods because state regulators have cited a lack of evidence for adverse health outcomes
when making industrial permitting decisions. We investigated how cancer incidence relates to
cancer risk from toxic air pollution, race, poverty, and occupation across Louisiana census tracts,
while controlling for parish-level smoking and obesity rates, using linear regression and Akaike
information criterion model selection. We used the most recent cancer data from the Louisiana
Tumor Registry (2008-2017), estimates of race, poverty, and occupation from the US Census
Bureau’s American Community Survey (2011-2015), and estimated cancer risk due to point
sources from the US Environmental Protection Agency’s 2005 National Air Toxics Assessment
(accounting for cancer latency). Because race and poverty were strongly correlated (r = 0.69,

P <0.0001), we included them in separate, analogous models. Results indicated that higher
estimated cancer risk from air toxics was associated with higher cancer incidence through an
interaction with poverty or race. Further analysis revealed that the tracts with the highest (i.e. top
quartile) proportions of impoverished residents (or Black residents) were driving the association
between toxic air pollution and cancer incidence. These findings may be explained by
well-established disparities that result in greater exposure/susceptibility to air toxics in Black or
impoverished neighborhoods. Regardless, our analysis provides evidence of a statewide link
between cancer rates and carcinogenic air pollution in marginalized communities and suggests that
toxic air pollution is a contributing factor to Louisiana’s cancer burden. These findings are
consistent with the firsthand knowledge of Louisiana residents from predominantly Black,
impoverished, and industrialized neighborhoods who have long maintained that their

communities are overburdened with cancer.

1. Introduction

Residents of Cancer Alley and other industrialized
areas of Louisiana have long maintained that they
are disproportionately impacted by cancer and other
health problems from chronic exposure to industrial
pollution (e.g. [1-4]). Cancer Alley has been defined
as the ~130 mile, winding corridor along the Missis-
sippi River between Baton Rouge and New Orleans

© 2022 The Author(s). Published by IOP Publishing Ltd

[4], where, according to the state emissions invent-
ory, more than 200 industrial facilities release signi-
ficant amounts (i.e. >5 tons per year) of harmful air
pollution [5]. Notably, this definition of Cancer Alley
(alternatively labeled the Industrial Corridor) does
not capture some of Louisiana’s most heavily indus-
trialized communities (e.g. Mossville [3]). In abso-
lute terms, more pounds of industrial toxic air pol-
lution are released annually in Louisiana than in any
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other state, based on 2019 data from the US Environ-
mental Protection Agency (EPA) [6]. These emissions
translate to a disproportionate burden of health risks
for Louisiana’s industrialized neighborhoods. Nearly
every census tract between Baton Rouge and New
Orleans ranks in the top 5% nationally for cancer risk
from toxic air pollution and in the top 10% for respir-
atory hazards [7]. Concerns about Louisiana’s pollu-
tion burden have been dismissed by state regulators
and politicians, who maintain that there is no evid-
ence of adverse health outcomes (e.g. [8]), or that life-
style choices play a larger role in the state’s cancer bur-
den (e.g. [9]). Such perspectives fail to consider the
lack of pollution-related research in Louisiana, or the
complex and interactive pathways through which dis-
crimination and inequities influence behaviors, toxic
exposures, and health outcomes [10].

While cancer risk from air toxics is uniformly high
across Louisiana’s Industrial Corridor by national
rankings, this burden is unevenly distributed among
neighborhoods. Recent estimates of pollution-related
cancer risk for census tracts from Baton Rouge to New
Orleans range from 24.8 per million (Tract 279.02,
Jefferson Parish) to 1505.1 per million (Tract 708,
St John the Baptist Parish), with Black and impov-
erished tracts being disproportionately impacted
[11-13]. (Louisiana parishes are equivalent to US
counties.) This disparity is part of a larger pat-
tern of inequities in pollution exposure across the
United States [14-21] and globally (reviewed in
[22]). In Louisiana, industrial facilities are often loc-
ated on former plantation sites, where the adja-
cent neighborhoods are predominantly Black (i.e.
African-American) and often include descendants
of the emancipated settlers who founded the com-
munity [23]. The pollution risks faced by these and
other Black communities are not simply products of
their lifestyles; Black Americans are exposed to an
estimated 56% more fine particulate (PM,5) pollu-
tion compared to the amount that would be gen-
erated by their consumption of goods and services,
while White Americans benefit from 17% less expos-
ure relative to their consumption [24]. Compound-
ing this racial disparity, Black Americans do not
receive a proportionate share of the economic bene-
fits from industrial polluters, in terms of employment
opportunities [17].

In Louisiana and across the United States, the
most racially segregated neighborhoods tend to
experience the highest cancer risks from air toxics
[13, 16]. Racial residential segregation is considered
to play a major role in health disparities, includ-
ing those related to air toxics [25, 26]. This form
of segregation is caused by structural mechanisms
of discrimination that result in political, economic,
legal, and social disparities [26, 27]. In turn, these
disparities result in a complex network of factors
in the built environment, social environment, and
individual situation that can increase exposure or
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susceptibility to pollution [26]. For example, the lack
of local grocery stores in the built environment and
food insecurity in the social environment can con-
tribute to poor nutrition in communities of color,
increasing susceptibility to diabetes or heart disease
[26]. These diseases can be triggered or worsened by
chronic exposure to particulate matter pollution [28],
which is consistently higher in communities of color
across the United States [19, 29]. Existing disparit-
ies in segregated communities can be worsened by
industrialization, for example, when grocery stores or
recreational centers are closed to make way for pet-
rochemical plants. In Louisiana, the dismantling of
built and social environments for industrial devel-
opment has led to the relocation of entire com-
munities (e.g. Diamond, LA), while members of other
communities (e.g. Mossville, LA) still seek equit-
able relocation [30]. Relocation can (theoretically)
reduce or circumvent toxic exposures and certain
other inequities in segregated communities; however,
buyout programs present their own challenges with
respect to distributive, procedural, and interactional
injustice [31].

From a public health perspective, regulatory
decisions related to air quality should be informed
by information about emissions, exposures, risks,
and corresponding health outcomes. The need for
such information in Louisiana is particularly acute,
where hundreds of new pollution sources are per-
mitted each year [32] and where there is minimal
data about health outcomes associated with pollu-
tion exposure. Even when faced with strong evidence
of pollution disparities, Louisiana’s political leaders
and decision-makers may require evidence of dispar-
ate health oufcomes before taking corrective action
[33]. The few studies of health outcomes from resid-
ential exposure to environmental pollution in Louisi-
ana have generally reported non-significant findings
(but see [34]). However, these studies were statist-
ically underpowered [35, 36] or lacked any quant-
itative measure of pollution exposure [37]. Des-
pite being cited as evidence against pollution-related
cancer disparities [8, 38], the annual reports from
Louisiana’s cancer registry do not quantify pollu-
tion exposure or control for confounding variables
in their statistical comparisons of ‘Industrial Cor-
ridor’ cancer rates (e.g. [39-41]). To address the lack
of empirical research about pollution-related health
outcomes in Louisiana, we evaluated cancer incid-
ence among Louisiana census tracts relative to estim-
ated cancer risk from air toxics, while accounting
for race, poverty, and certain health and occupa-
tional factors using publicly available data from state
and federal agencies. Our goals were to elucidate the
drivers of cancer rates in Louisiana and to determ-
ine whether the firsthand experiences of industrial-
ized communities, which indicate a disproportion-
ate burden of cancer, are evident in Tumor Registry
data.
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Pontchartrain Lake System are shown in blue.

Figure 1. Age-adjusted annual cancer incidence rates, averaged from 2008 to 2017, as reported by the LTR. Data breaks
correspond to quartiles. Inset depicts the Industrial Corridor from Baton Rouge to New Orleans. The Mississippi River and the

Cancer Incidence
Rates (2008-2017)
[ ]2889-3848
[] >384.8-480.7
[ >480.7-576.6
B ~576.6-1868.8

[ Data unavailable
Age-adjusted, per 100,000 population

2. Methods

2.1. Cancer incidence rates

We used 10 year average annual cancer rates for
all malignant tumors combined from the Louisiana
Tumor Registry (LTR)’s most recent annual report,
reflecting cases diagnosed from 2008 to 2017 [42].
We did not examine individual cancer types because
these data are not published for most census tracts
in Louisiana due to the relatively small numbers
of cases [42]. Even for the most prevalent cancers
(i.e. lung and breast), the low case counts (typic-
ally 2-5 cases per year) result in unreliable cancer
rates, i.e. with extremely wide confidence intervals.
Thus, our analysis is limited to overall cancer incid-
ence, which is directly comparable to estimated can-
cer risk from air toxics. Notably, specific cancers
that are excluded from reporting are still included
in the overall cancer rate, which is available for 932
of 1148 census tracts in Louisiana (figure 1). These
rates are age adjusted by the LTR and presented per
100 000 population. For simplicity, we subsequently
refer to age-adjusted cancer incidence rates as ‘cancer
incidence’.

2.2. Pollution-related cancer risk

We used estimates of pollution-related cancer risk
from the EPA’s 2005 National Air Toxics Assess-
ment (NATA), which reflect toxicity-weighted pollu-
tion levels in 2005 (figure 2). Because EPA improves
its NATA methodology continually, the 2005 NATA
provided more a refined approach compared to

the previous NATAs (1996, 1999, and 2002), while
still allowing a reasonable time gap relative to the
2008-2017 cancer rate dataset to account for cancer
latency [43]. Additionally, in selecting the dataset, we
considered that changes in census tract boundaries
occur during each decennial census (e.g. 1990, 2000,
and 2010). To account for these changes, we excluded
significantly-changed census tracts from our analysis,
as described below.

We used NATA’s estimates of Point Source Cancer
Risk because Louisiana’s industrialized communities
are characterized by a high density of point sources.
These represent stationary sources for which loca-
tions are known, including industrial plants, elec-
tric utilities, and large waste incinerators [44]. In
the 2005 NATA, Point Sources did not include air-
ports, homes, wildfires, vehicles, or other mobile
or diffuse sources of pollution [44]. For simplicity,
we subsequently refer to 2005 NATA Point Source
Cancer Risk as ‘estimated cancer risk from air tox-
ics’ or, where a more concise descriptor is helpful,
‘air toxics.

2.3. Demographic and health indicators

Our analysis included 5 year estimates of race,
poverty, and occupation at the census tract level from
the US Census Bureau’s 2015 American Community
Survey (ACS; representing data collected from 2011
to 2015; figure 3). These estimates included percent-
ages of Black or African-American residents (alone
or in combination with another race), percentages of
residents living below the federal poverty threshold,
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Estimated Cancer Risk from
Point Sources of Pollution in 2005
(ex_cess cases per million population)

] 0-02
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Il >18-407
B Data unavailable

Figure 2. Cancer risk from point sources of pollution, as reported in the EPA’s 2005 (top) and 2014 (bottom) NATA. Data breaks
correspond to quintiles. Note that the methodology differed between these two assessments, so the resulting data are not directly
comparable. The Mississippi River and the Pontchartrain Lake System are shown in blue.

Estimated Cancer Risk from

Point Sources of Pollution in 2014
(excess cases per million population)

[]0-03
[]0.3-08

[ >08-7.3
BN >7.3-17.4
Bl >17.4-1,470.4
[ Data unavailable

percentages of the workforce employed by the con-
struction industry, and percentages employed by the
manufacturing industry. We chose these industries as
proxies for occupational exposure to toxic air pollut-
ants because they are the most likely to be consistently
associated with air quality hazards.

Because smoking and obesity data were not avail-
able at the census tract level, our analysis included
parish-level smoking and obesity data from the 2011

Louisiana County Health Rankings (figure 4) [45].
The 2011 County Health Rankings use 20032009
smoking data from the US Centers for Disease Con-
trol (CDC)’s Behavioral Risk Factor Surveillance Sys-
tem and 2008 obesity data from the CDC’s National
Center for Chronic Disease Prevention and Health
Protection. By necessity, our analysis used the same
average parish value for all census tracts within that
parish.
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Figure 3. (Top) Percentage of Black residents (i.e. African American, one or more races). (Bottom) Percentage of families living
below the US federal poverty threshold. Both datasets are 5 year estimates (2011-2015) from the US Census Bureau’s ACS. Data
breaks correspond to quartiles. The Mississippi River and the Pontchartrain Lake System are shown in blue.

Race (% Black)
[]o-10
>10-28
B >28-59
Il >59-100

Poverty (%)
[ ]0-12
[]112-19
B >19 - 30
Il >30 - 100

2.4. Mapping

We mapped each dataset by percentile using QGIS
Version 3.18 to visualize the geographic patterns of
cancer (figure 1), toxic air pollution (figure 2), race
and poverty (figure 3), and smoking and obesity
(figure 4). Because our analysis relies on historical
pollution values, but current pollution values are rel-
evant from a health policy perspective, we included
Point Source Cancer Risk from the most recent
(2014) NATA (figure 2). Importantly, the results of

different NATAs are not directly comparable due
to methodological changes over time [46]. We did
not use the 2014 NATA data in any statistical ana-
lysis; rather, we mapped the data for visualization
only.

2.5. Data exclusions

Our statistical analyses excluded census tracts for
which cancer rates were not available from the
LTR (n = 216 out of 1148 total). Additionally, we
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Perecentage of Adult Population
Considered Obese
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[ >31-33
B >33-35
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Current Smokers
(Percentage of Adult Population)

[ 14-21

] >21-23

B >23-25

B >25-31
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Figure 4. (Top) Percentage of adult population that is considered obese. (Bottom) Percentage of adult population that currently
smoke tobacco products. Both datasets are from the 2011 county health rankings, which use 2003—-2009 smoking data and 2008
obesity data. Data breaks correspond to quartiles. The Mississippi River and the Pontchartrain Lake System are shown in blue.

excluded tracts that the Tumor Registry designated
as containing military bases (n = 27), because mil-
itary personnel are likely to have different exposure
histories compared to permanent residents. We also
excluded census tracts (n = 155) with geographic
boundaries that had changed substantially between
the 2000 census and 2010 census, as identified by the
US Census Bureau [47]. This exclusion was neces-
sary because we used a pollution (i.e. estimated cancer
risk) dataset that was based on the 2000 census and a
cancer incidence dataset that was based on the 2010

census. After these exclusions, there were 750 census
tracts remaining in the final dataset. Estimates of can-
cer risk from EPA’s 2005 NATA were available for all
of these tracts.

2.6. Statistical analysis

We performed all analyses in R Statistical Software
[48]. With the exception of cancer rates, all variables
in our datasets were non-normally distributed and
were natural-log transformed (estimated cancer risk
from air toxics) or arcsine transformed (race, poverty,
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and occupation) for analysis. Transformed data were
mean centered [49].

Exploratory analysis revealed significant spatial
autocorrelation (p < 0.001) in a model of cancer
incidence rates with poverty, estimated cancer risk
from air toxics, and the interaction of these terms,
as tested by a simulation with 10 000 replicates and
measured by Moran’s i [50]. In order to reduce spatial
autocorrelation, we include a fixed effect in the linear
model for parish. This results in a model with no stat-
istically significant spatial autocorrelation (p = 0.40),
and therefore may have appropriate standard errors
for coefficient estimates. In addition to controlling
spatial autocorrelation, the addition of parish dummy
variables in the model automatically controls for the
combined effects of parish-level confounders, which
are not of interest to this study.

We evaluated the performance of alternate linear
models for predicting census tract-level cancer incid-
ence rates using the step Akaike information criterion
(AIC) function in the MASS package of R Statistical
Software [51]. This function performs stepwise AIC
[52] model selection through an iterative process that
adds and removes variables sequentially to identify
the best fit model. We chose AIC for model selec-
tion because it is a widely-used approach that per-
forms well under a broad range of modeling scen-
arios, including for spatial data [53].

As described in the results, race and poverty were
strongly correlated across our dataset. To avoid col-
linearity, we conducted parallel analyses with mod-
els that included poverty or, alternately, race. Our
initial model of cancer incidence included the dir-
ect effects of air toxics, poverty, parish, construction
employment, manufacturing employment, smoking,
and obesity, as well as the interactive effect of air
toxics and poverty. We used an analogous model
to evaluate race (proportion of Black residents) in
place of poverty. After identifying the top model
from each analysis through stepwise selection, we
used the base package of R to calculate model stat-
istics. To determine the overall significance of air tox-
ics in the top model, we used an F-test to compare
versions of the same model with and without this
risk.

To explore the interaction that was detected
between poverty and air toxics, we calculated median
cancer incidence rates for census tracts that were dis-
proportionately impoverished versus disproportion-
ately affluent (i.e. above or below median poverty
rates, respectively). We further divided the impov-
erished group into air toxics quartiles, based on the
full range of air toxics values represented in our data-
set (n = 750 census tracts). We then calculated can-
cer incidence rates for each of the following air toxics
groups: lowest quartile, below median, above median,
highest quartile. We used ¢-tests to compare median
cancer incidence of each of the above groups to the
overall median cancer incidence for the entire dataset
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(n =750 tracts). We generated quantitative estimates
of the cancer burden from severe pollution by calcu-
lating the difference in mean cancer incidence rate for
the most polluted versus least polluted census tracts
(i.e. top versus bottom air toxics quartiles among
tracts with above-median poverty), or, alternately,
the top quartile versus the overall mean (n = 750
tracts). We then multiplied the result by the pop-
ulation represented by the corresponding data sub-
set, to derive the total number of estimated excess
cancer cases per year. Additionally, we divided the
overall dataset by poverty quartile and used Pear-
son’s correlation to test the relationship between air
toxics and cancer risk for each data subset. We cre-
ated scatterplots of the raw (i.e. untransformed) data
to visualize these comparisons for the top and bot-
tom quartiles by poverty. These plots included linear
regression lines with 95% confidence intervals, cal-
culated using the geom_line function in ggplot2 in
R Statistical Software. We conducted parallel analyses
using race instead of poverty.

3. Results

3.1. Quality assurance and data exclusions

After all exclusions (see section 2), data distribu-
tions were generally unchanged (table 1). One not-
able exception was maximum poverty rate, which was
lower in our final dataset due to the exclusion of
two census tracts in New Orleans with exceptionally
high poverty rates (Tracts 44.02 and 48, with 87%
and 100% poverty, respectively). Both tracts were
geographically tiny (<0.16 mi?), contained fewer
than 500 people, and were excluded because their
boundaries changed substantially between 2000 and
2010. The other notable exception was maximum
cancer rate, which was lower in our final dataset
due to the exclusion of three outlying census tracts
(Tracts 9507.02 and 9507.04 in Vernon Parish, Tract
109 in Bossier Parish) that contained military bases
and had exceptionally high cancer rates (between
1125 and 1869 cases annually per 100 000 popu-
lation). Regardless, there was no significant differ-
ence in cancer rates between census tracts that were
excluded (n = 182) or included (n = 750) in our
analysis (+ = —1.71, df = 193.11, P = 0.088). If
the three outlying tracts are ignored, there is even
less statistical support for a difference in cancer
rates between census tracts that were included versus
excluded from our analysis (+ = —0.549, df = 236.05,
P =0.583). Thus, our final dataset was representative
of cancer, pollution, race, poverty, and employment
in construction and manufacturing industries in
Louisiana.

There were two census tracts in the data-
set that were outliers, in terms of exceptionally
high pollution (i.e. estimated cancer risk) values:
census tract 22017023800 (Cedar Grove neighbor-
hood, Shreveport, Caddo Parish) and census tract
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Table 1. Sample sizes and summary statistics for each variable analyzed®.
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# Census Lst 3rd

Variable Dataset tracts Minimum  quartile Median  quartile  Maximum
Cancer incidence All available 932 288.9 443.6 481.4 514.1 1868.8

Analyzed 750 288.9 442.8 480.7 513.7 845.5
Pollution-related All available 1105 0.001 0.25 0.97 1.47 40.70
cancer risk Analyzed 750 0.001 0.22 0.91 1.57 30.90
% Black All available 1128 0 10.8 28.7 60.2 100

Analyzed 750 0 10.6 27.6 55.3 100
% Poverty All available 1127 0 12.1 19.5 30.2 100

Analyzed 750 0.9 11.9 18.3 27.9 62.0
% Employed in All available 1126 0 4.3 7.1 10.5 29.1
construction Analyzed 750 0.3 4.7 7.5 10.8 243
% Employed in All available 1126 0 3.9 6.7 10.2 285
manufacturing Analyzed 750 0 44 7.4 10.9 28.5
% Current smokers  All available data NAP 14.0 21.0 23.0 24.0 31.0
% Obese were analyzed NAP 27.0 30.0 31.0 34.0 39.0

2 See section 2 for data sources.

b Parish-level data used (n = 64 parishes); census-tract-level data unavailable.

22089062500 (Norco, St Charles Parish). As a con-
servative approach, we retained these outliers in our
main statistical analysis (figure 5), but excluded them
in our quartile analysis for poverty (figure 6) and race
(figure A1) quartile.

3.2. Relationships among untransformed predictor
variables

Among census tracts (n = 750), race (% Black) and
poverty were strongly correlated (r = 0.69, P < 0.0001;
figure 3). Tracts with higher proportions of Black res-
idents generally had lower percentages of the work-
force represented in the construction (r = —0.23,
P <0.0001) or manufacturing industries (r = —0.11,
P =0.003). Similarly, tracts with higher poverty rates
generally had lower percentages of the workforce rep-
resented in the construction industry (r = —0.11,
P = 0.003) or manufacturing industries (r = —0.08,
P = 0.024). Among all census tracts, estimated can-
cer risk from air toxics was not significantly related to
poverty rate (r = 0.05, P = 0.16), percentages of Black
residents (r = 0.04, P = 0.24), or percentages of the
workforce in construction (r = 0.06, P = 0.12). How-
ever, this risk was positively correlated with the per-
centage of the workforce in manufacturing (r = 0.07,
P = 0.041). Among Louisiana parishes, smoking and
obesity rates were positively correlated (r = 0.30,
P <0.0001).

3.3. Relationship between cancer risk from air
toxics and cancer incidence

As expected, cancer incidence varied throughout the
state (figure 1). Estimated cancer risk from air tox-
ics (i.e. 2005 NATA Cancer Risk from point sources)
was elevated in southwest Louisiana and in the
area known as Cancer Alley in southeast Louisiana
(figure 2). The top model from AIC selection included
the direct effects of parish, poverty, and cancer risk

8

from air toxics, as well as the interaction between
poverty and cancer risk from air toxics (table 2).

Model statistics revealed that cancer risk from air
toxics was associated with cancer incidence through
an interaction with poverty, as opposed to a dir-
ect effect (table 3). Results of race models were
analogous to results of poverty models (tables Al
and A2). As further evidence of an overall effect
of cancer risk from air toxics, a significant differ-
ence was observed after removing pollution from the
poverty model (F = 4.46, P = 0.012) and from the
race model (F = 4.06, P = 0.018). A scatterplot of
the overall dataset confirmed that among predomin-
antly Black and/or impoverished census tracts, those
with more toxic air generally have higher cancer rates
(figure 5).

3.4. Further analysis of interaction effects

As described in the methods, we conducted addi-
tional analyses to better understand the observed
interaction of air toxics and poverty or air tox-
ics and race. Among the most impoverished census
tracts (i.e. fourth quartile), higher estimated can-
cer risk from air toxics was correlated with higher
cancer incidence (r = 0.25, P = 0.0005). This rela-
tionship was not observed among less impoverished
census tracts (third quartile: r = —0.01, P = 0.85;
second quartile: r = 0.03, P = 0.72; first quartile:
—0.11, P=0.13).

A similar pattern was observed when the dataset
was broken down by Race (fourth quartile: r = 0.13,
P = 0.07; third quartile: r = 0.03, P = 0.71;
second quartile: r = 0.01, P = 0.87; first quartile:
r = —0.10, P = 0.16). Census tracts that were dispro-
portionately Black or impoverished had higher can-
cer incidence rates compared to the entire dataset
(P < 0.016; table 4). Within each of these dispropor-
tionate groups, cancer incidence was elevated among
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Figure 5. Relationships among toxic air pollution, cancer rates, poverty, and race for Louisiana census tracts (n = 750). The same

dataset is presented in both panels, with a smaller scale on the bottom panel to better distinguish data points. All values
(including poverty) are plotted on continuous scales. Solid gray line indicates US average cancer rate (448.7); dashed gray line
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tracts with higher estimated cancer risk from air tox-
ics (P < 0.016; table 4), but not among tracts with
lower estimated cancer risk from air toxics (table 4;
figures 6 and A1l).

The (conservatively) estimated cancer burden
from severe air pollution was 85 cases in Louisiana
annually (among tracts with above-median poverty).
More specifically, this value was 85.8 cases for the
top-quartile-air-toxics versus global-average compar-
ison ([501.7-480.3] x [400 788/100 000]), or 91.8

cases for top versus bottom-air-toxics-quartiles com-
parison ([501.7-478.8] x [400 788/100 000]).

4. Discussion

To our knowledge, this is the first statewide study of
cancer incidence in Louisiana that accounts for inter-
actions between air pollution and poverty or race. We
found that higher estimated cancer risk from toxic
air pollution was linked to higher cancer incidence
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Figure 6. Comparison of pollution versus cancer rates for the most affluent census tracts (top panel; r = —0.11, P = 0.13) and
most impoverished (bottom panel; r = —0.25, P = 0.0005) census tracts with two outliers removed (see section 3). See table 4 for
quartile breaks and test statistics. Blue line represents a linear regression of untransformed data. Gray shading represents 95%

confidence intervals.

among Louisiana’s most impoverished neighbor-
hoods. Because poverty and race were strongly cor-
related in our dataset (reflecting the disproportionate
burden of poverty in Black communities), we could
not reliably distinguish between the two factors in
our statistical analyses. Regardless, the same patterns
emerged for Black or impoverished neighborhood:
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higher levels of toxic air pollution were associated
with higher cancer incidence.

There are multiple potential explanations
for our finding that the link between air toxics
and cancer incidence was observed in the most
impoverished/Black neighborhoods, but not among
more affluent/White neighborhoods. This finding
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Table 2. Best-supported models of tract-level cancer incidence from AIC stepwise model selection.

Main effects®

(all models) Interaction terms Other main effects AIC AAIC
Air toxics Air toxics X poverty None 5867.8 0
Poverty Employed in manufacturing 5868.2 0.4
Parish + Employed in construction 5869.9 2.1
+ Smoking 5869.9 2.1
+ Obesity 5869.9 2.1

2 Air toxics corresponds 2005 NATA Cancer Risk from point sources. See section 2 for other data sources.

Table 3. Statistics for best-supported cancer incidence model.

Variable Coefficient estimate® t P
(Model intercept) 485.0 32.48 < 0.0001
Air toxics —0.72 —0.26 0.79
Poverty 73.07 5.44 < 0.0001
Air toxics X poverty 29.14 2.98 0.003

2 Coefficients correspond to transformed and mean-centered data (see section 2).

Table 4. Mean cancer incidence among different data subsets and results of #-test comparisons®.

Cancer incidence

Versus all-data mean (480.3)

95% confidence

Subset of census tracts Population Mean interval t P
Disproportionately affluent® 1895 934 471.8 466.8-476.7 —3.39 0.0008
Disproportionately poorb 1542 402 488.8 483.2-494.5 2.97 0.003
Bottom-quartile pollution 461 887 478.8 468.8-488.8 —0.30 0.76
Below-median pollution 876 456 485.9 478.7-493.2 1.53 0.13
Above-median pollution 663 173 492.9 484.0-501.8 2.80 0.006
Top-quartile pollution 400 788 501.7 489.7-513.7 3.55 0.0006
Disproportionately white® 1818 620 473.4 468.4-478.4 —2.72 0.007
Disproportionately black® 1613 336 487.2 481.6-492.9 2.41 0.016
Bottom-quartile pollution 435430 480.3 470.0-491.3 0.07 0.95
Below-median pollution 802 224 484.0 476.1-491.9 0.93 0.35
Above-median pollution 811112 490.3 482.2-498.4 2.44 0.016
Top-quartile pollution 456 349 498.9 487.6-510.3 3.25 0.002

2 Incidence is the number of newly-diagnosed cancer cases per 100 000 population and age-adjusted. Pollution categories are based on
pollution values from the entire dataset (n = 750 census tracts). See section 2 for data sources.

b Census tracts with poverty values below (affluent) or above (poor) median poverty rate (18.25%).

¢ Census tracts with above-median values for corresponding race (Black, 27.6%; White, 67.7%).

may reflect the well-documented disparities in health
risk factors and medical care that leave Black and
impoverished communities more vulnerable to neg-
ative health outcomes [54-56]. For example, these
communities are more likely to delay or forgo pre-
ventative medical visits due to the high cost of health-
care [57]. Empirical research indicates that physicians
serving Black communities are often less effective at
cancer education and cancer screening compared
to physicians serving White communities [58, 59].
Ultimately, Black communities in Louisiana, like
elsewhere in the US, are faced with a ‘double dis-
parity’, in which they are overburdened by environ-
mental pollution and medically underserved [60]. As
an additional or alternative explanation, our dataset
may have been inadequate to detect a link between
air toxics and cancer incidence among affluent/White
communities, perhaps because of their relatively
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greater geographic mobility [61]. Given the lack of
widespread data on residential histories, this factor
could contribute to uncontrolled variation in actual
exposures and obscure a relationship between estim-
ated exposure and cancer incidence.

While economic disparities were not the focus
of our study, we found that Black residents appear
to be underrepresented in the construction and
manufacturing industries in Louisiana. Specifically,
census tracts with higher proportions of Black res-
idents had lower proportions of their workforce
represented in the construction and manufacturing
industries. Additional research is warranted to under-
stand the full nature of this disparity, but our find-
ings are consistent with previous research document-
ing that Black Americans are underrepresented in
industrial employment, particularly for high-paying
jobs [17].
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It is important to recognize the limitations inher-
ent to studying environmental health disparities in
Louisiana. Like elsewhere, there is limited inform-
ation about factors that influence cancer incidence
(e.g. drinking water contamination, or residential his-
tory), particularly for smaller geographic areas, which
are the most relevant with respect to ambient air qual-
ity [62]. Accordingly, many factors that influence an
individual’s cancer risk cannot be evaluated in our
present study. However, this ecological analysis has
the benefit of a larger sample size (n = 750 census
tracts, representing a combined population of 3.4
million people), which allowed us to detect the cancer
risk from toxic air pollution in cancer incidence rates,
despite the ‘noise’ in the dataset [63]. Some uniden-
tified factors that influence cancer risk likely differ by
parish (e.g. availability of social services) or correlate
strongly with poverty/race (e.g. education) and were
thus accounted for in our analysis. Finally, not all can-
cer risk factors contribute to census-tract-level vari-
ation in cancer incidence. For example, occupational
exposures can increase cancer risk, but our analysis
determined that occupation in high-risk industries
(i.e. construction or manufacturing) did not explain
the geographic variation in cancer incidence among
census tracts. While we would expect geographic vari-
ation in occupational exposure, it is possible that
this variation was better represented by parish, which
was included as a variable in our model. Regardless,
it seems unlikely that occupational exposure could
explain the putative link between air toxics and cancer
incidence among predominately Black (but not pre-
dominantly White) communities in Louisiana, given
that Blacks are underrepresented in jobs at polluting
industrial facilities [17].

An additional consideration for our study is that
the scientific understanding of cancer risk is con-
tinually improving. While we used the best avail-
able estimates of cancer risk from air toxics, NATA
methods (including toxicity values) are continually
refined and updated [44]. The strength of NATA is
that it provides reliable information about relative
risk, which is less influenced by changing method-
ology compared to absolute risk [44]. For example,
after the release of the 2005 NATA, EPA substantially
revised its toxicity values for chloroprene and ethyl-
ene oxide. As a result, Tract 708 (St John the Baptist
Parish), which is impacted by both pollutants, is now
estimated to have the highest NATA Cancer Risk in
Louisiana by a wide margin [11]. While the abso-
lute risk value for this tract changed dramatically,
from 65 in a million to 1505 in a million, the rel-
ative risk remained similar (88th state percentile in
2005 versus 100th state percentile in 2014). The pro-
spect of large changes in toxicity values may be one
reason why EPA encourages NATA users to focus on
relative risks, particularly with respect to census tracts
[64]. The uncertainties involved in estimating toxicity
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values likely explain, at least in part, why the rela-
tionship we detected between cancer risk and cancer
incidence was not more linear (figure 5). Regardless,
our analysis and interpretation are robust to changes
in the NATA methodology, including revisions to tox-
icity values, because we focus on variation in NATA
Cancer Risk among a substantial number (n = 750)
of census tracts.

Our study provides evidence that toxic air pollu-
tion is a significant driver of cancer rates in Louisi-
ana’s most vulnerable communities. We found no
evidence that parish-wide smoking or obesity rates
contributed to the observed link between estimated
cancer risk from air toxics and cancer incidence.
While it was not possible to account for smoking or
obesity in this study of Louisiana census tracts, it
seems improbable that average smoking/obesity rates
for census tracts would vary in a pattern that correl-
ates with toxic air pollution, but is unaccounted for
by the inclusion of parish, poverty, race, and occu-
pation in the model. Regardless, behavioral factors
must be put into their appropriate social and envir-
onmental contexts because they are shaped by deeply-
rooted structural inequities, such as disparities in the
built environment (e.g. parks and recreational facil-
ities) or access to quality healthcare [56]. These dis-
parities make it more important, not less import-
ant, to understand and address the disproportionate
burden of pollution in environmental justice com-
munities. Our study contributes to this understand-
ing by systematically documenting, for the first time,
the increased cancer burden among the most pol-
luted and marginalized communities in Louisiana.
Future assessments of the industrial pollution burden
in Louisiana must account for potential interactions
among poverty, race, and exposure to air toxics. These
conclusions are consistent with the firsthand exper-
iences of Black residents from impoverished, indus-
trialized neighborhoods who have long maintained
that their communities are overburdened with cancer
from toxic pollution.
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Figure A1. Comparison of pollution versus cancer rates among census tracts with the fewest (first quartile, top panel; r = —0.10,

P =0.16) and most (fourth quartile, bottom panel; r = 0.13, P = 0.07) Black residents as a proportion of the population. See
table 4 for quartile breaks and test statistics. Blue line represents a linear regression of untransformed data. Gray shading
represents 95% confidence interval.

Table Al. Stepwise selection results for alternate® cancer incidence model.

Main effects” Interaction terms AIC AAIC Rank
Air toxics Race X air toxics 5854.3 0 1
Race parish None 5864.4 10.1 2

2 Model includes race (% Black residents) instead of poverty.
b Air toxics corresponds 2005 NATA Cancer Risk from point sources. See section 2 for other data
sources.
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Table A2. Statistics for best-supported alternate® cancer incidence
model.

Coefficient
Variable® estimate® t P
(Model intercept) 489.95 33.66 < 0.0001
Race (% Black) 44.39 8.00 < 0.0001
Air toxics —0.43 —0.16 0.871
Air toxics X race 12.75 3.35 0.0008

2 Model includes race (% Black residents) instead of poverty.

b Air toxics corresponds 2005 NATA Cancer Risk from point
sources. See section 2 for other data sources.

¢ Coefficients correspond to transformed and mean-centered data
(see section 2).
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